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Experimental estimation of blood flow velocity through simulation of intravital
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Quantization of red blood cell (RBC) velocity in micro-vessel is one of the techniques for dynamic
observation of microvascular mechanisms. The flow measurement of RBC in micro-vessels is still a challenge
nowadays. Image processing for velocity measurement using a frame by frame analysis is a common
approach. The accuracy of the calculations, which is algorithm dependant, has rarely been examined. In this
paper, we evaluated the accuracy of the existing methods, which includes cross correlation method, Hough
transform method, and optical flow method, by applying these methods to simulated micro-vessel image
sequences. Simulated experiments in various micro-vessels with random RBC motion were applied in the
evaluation. The blood flow variation in the same micro-vessels with different RBC densities and velocities
was considered in the simulations. The calculation accuracy of different flow patterns and vessel shapes were
also examined, respectively. Based on the comparison, the use of an optical flowmethod, which is superior to
a cross-correlation method or a Hough transform method, is proposed for measuring RBC velocity. The study
indicated that the optical flow method is suitable for accurately measuring the velocity of the RBCs in small
or large micro-vessels.

© 2010 Elsevier Inc. All rights reserved.

Introduction

The relationship between blood flow in microcirculation and the
clinical physiology in blood circulation has been a wide-reaching and
in-depth understanding. Various risk factors of diseases can be related
to corresponding changes in microcirculation. For instance, Raynaud's
syndrome(Wollersheim et al., 1988; Bertuglia et al., 1999), hyperten-
sion(Bonacci et al., 1996; Cesarone, 2000) or diabetes(Chang et al.,
1997; Tibiriçá et al., 2007) are usually accompanied with impaired
microcirculation. Therefore, information in blood flow of microcircu-
lation plays an important role in health assessment and angiopathy
prevention. Dynamic observation of microvascular mechanisms thus
provides a deeper understanding of diseases and their relationship to
the physiological function of microcirculation.

Quantization of the red blood cell (RBC) velocity in micro-vessels
is a means of such observation. However, the flow measurement of
RBC in micro vessels is still a challenge with current techniques. The
flow in large vessels is able to be measured by using electro-magnetic
blood flowmeter or ultrasonic Doppler flowmeter. Plenty useful
information has been obtained on alterations in flow during
physiological events and in the viscous properties of blood. A major

limitation of such measurements has been their inability to relate
microvascular perfusion observed within individual micro-vessels to
the topographical succession of arterioles, capillaries, and venules
peculiar to a given tissue.

Image processing is an alternative, non-invasive approach to achieve
this goal. Several literatures have been published in RBC velocity
measurement in micro-vessels using dynamic video microscopy
(Bollinger et al., 1974). The measurement of the displacement of
relevant patterns (RBCs or plasma gaps) between two frames and the
time separating them give an estimation of the RBC velocity. But it
requires the selection of a good tracking pattern which appears to be
difficult in larger vessels such as venules and arterioles. Several studies
have focused on the use of cross correlations for the assessment of RBC
velocity (Tsukada et al., 2000; Brox andWeickert, 2002). Thesemethods
can be divided into two categories: the temporal correlation and the
spatial correlation methods. Umetani et al. (1989) have used image
gradient method to measure microvascular red blood cell velocity and
pointed out the time-varying relationship between the blood flow
velocities. Recently, Optical flow has been proposed as a quantitative
method ofmeasuring the detailed velocity distribution inmicro-vessels
(Sugii et al 2002, Tsukada et al., 2000). The authors have developed a
particle image velocimetry (PIV) technique with improved dynamic
range, spatial resolution and measurement accuracy, and also analyzed
the blood velocity profile in microvessels of arterioles in rat mesentery
(Sugii et al., 2002). Manjunatha and Singh (2002) also used optical flow
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method to measure velocity profiles of a blood flow in the multiple
branching of frog mesentery employing microscopic video imaging
(Manjunatha and Singh, 2002). In the literature by Kempczynski and
Grzegorzewski (2008), the Hough transform technique has been
adopted to estimate the velocity of RBC aggregates during sedimenta-
tion. RBC velocity was also estimated by using the Hough transform
method in a simulation experiment. The results show that velocity
assessment performs excellently up to 750 pixels/s. At higher velocities
(N1250 pixels/s), themethod fails and selects an alternative orientation
that results in a large velocity error (Dobbe et al., 2008).

Generally, the blood flow velocity inside microvessels in vivo is
estimated along the central line of vessels. The accuracy of calculated
results, which is algorithm dependant, has rarely been examined. In
this paper, the red blood cell velocities in microvessels were
calculated using the three mentioned measurement methods: cross
correlation method, Hough transform method, and optical flow
method, through simulation of intravital microscopic imaging. The
accuracy of the methods was evaluated by applying these methods to
simulated microvessel image sequences, of which the RBC velocities
are known. The calculation accuracy of different flow patterns and
vessel shapes were also examined respectively.

Materials and methods

Image generation

In microcirculation, the capillaries lie between, or connect, the
arterioles and venules. Capillaries form extensive branching networks
in a vivo body, which dramatically increase the surface areas available
for rapid exchange of molecules. A capillary is a thin size form of
vessel. Pre-capillary is a vessel lacking complete coats, located just to
the arterial side of a capillary, and is about 3–5 times in diameter. It is
not much different from capillary in other respects. Pre-capillary and
capillary branch off from metarteriole and terminal arteriole. The
simulation images were generated based on the physical (or
physiological) and anatomical characteristics of microcirculation.
The capillary bed is simulated in various forms, with one of them in
straight line, and another clip shaped for one RBC to pass. Branching
bed of pre-capillary into capillary is also simulated. A Matlab based
computer program (MathWorks, version 7. 1) was used to generate
the micro-vessel image sequences.

Blood is a complicate heterogeneous liquid with its viscosity
varying with shear rate. It possesses non-Newtonian characteristics.
Two kinds of dynamic blood flow images were simulated in this study.
One was to simulate the random motion of RBC in various shapes of
blood vessels. Individual RBCs suspended in autologous plasma that
have randommotion were studied too in this category. The other one
focused on the blood flow variation with different RBC densities. This
is included in our study because the density of RBC, or hematocrit, is
the most important factor in blood hydrodynamic variation. The RBC
density also dominates the variation in viscosity. The higher RBC
density, or the higher hemotocrit, results in higher friction between
the blood layers, which causes higher viscosity. Normal hematocrit is
about 50% of blood in volume. In the simulation, the RBC densities
were grouped to high, medium and low levels.

Vessel size and shapes
Vessel size varies in a wide range in human anatomy.Micro vessels

were generated with various sizes: (1) 1-RBC wide in diameter
(Fig. 1a), (2) 2-RBCs wide in diameter (Fig. 1b) and 4-RBCs wide in
diameter (Fig. 1c). Different vessel shapes were generated with the
Matlab-based program in order to cover various real conditions as
blood flow in micro-vessels. The RBC movement in vessels followed
the velocity variation shown in Fig. 1d through e. Fig. 1f and g gives 2
examples of shapes: branching and clip (or clip-shape). These shapes

can often be found in various parts of a human body. For example, the
clip-shape vessel is very common in finger nail-fold.

Spatial distribution of RBC velocity in micro-vessel
The RBC velocity varies depending on the RBC location in a vessel.

Mathematical expression of the RBC motion model is showing in
Fig. 2. The RBC velocity Vwas simulated as a function of radius r inside
a vessel, V(r)=Vc(1−r2/R2), in which Vc is the center velocity (r=0),
R is the vessel radius. Due to viscosity, the velocity is less in value as r
increases (closer to the vessel wall). Motion in vessels of various RBC
densities was also modeled. Low, medium and high density of RBC is
defined based on the number of cells per unit volume. Fig. 3 shows
examples of vessels with different RBC densities. With different
densities, the image sequences were generated with various maxi-
mumRBC velocities of 1, 3, 5, and 10 pixels per frame respectively. The
RBC velocities have a parabolic curve function in relation to the
location inside a micro-vessel.

RBC velocity estimation

Cross correlation method (CCM)
Several studies have focused on the use of cross correlations for the

assessment of RBC velocity (Tsukada et al., 2000). The use of these
methods corresponds to the tracking of characteristic patterns in
space or in time. In this study, temporal correlation was used to
measure the blood flow velocity in themicro-vessels. For the temporal
cross correlationmethods, the transit time between two regions of the
micro-vessel is estimated by measuring the intensity of two
independent windows positioned on the skeleton of micro-vessel.
This transit time, estimated using an image correlation function
between the windows, is used to estimate the velocity.

Fig. 1. Various micro-vessels. Different sizes in diameter: (a)-(c) the diameter of the
micro-vessel is one, two and four times of the RBC size, respectively. (d)-(e) micro-
vessel changes from narrow to wide and vice versa. (f)-(g) Two vessel shapes: (f)
branching (g) clip.
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In particular correlation computation, the question resolves itself
into the following three points. First, skeleton extraction is applied on
the image to sketch the center line (i.e., skeleton) of the vessel which
is also regarded as the blood flow path in the capillary. The intensity of
each skeleton pixel as in each section is determined from the images.
Pixel intensity was averaged over the neighbor pixels within a 7-pixel
wide square which is similar to the physical size of a RBC. Second, the

maximum value of the one demotion cross-correlation between the
two sequential images was calculated to obtain the frame-to-frame
RBC displacement and the velocity correspondingly. Considering two
series x and y where window length i=0, 1, 2...n, the correlation
coefficient r is defined as

r =
Sxyffiffiffiffiffiffiffiffiffiffiffiffiffi
SxxSyy
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where
P

x and
P

y are the means of the corresponding series. Third, two
windows with the same size were used in each site of vessel for cross-
correlation computation. For two window cross-correlation, the
window length was equal to a half of segment length of each site.
For example, one windowwas located in the first half of the arteriolar
limb and the other window was in the second half. Furthermore, two
maximum values were obtained from these windows in each site and
were averaged to present the RBC displacement in two sequential
frames.

Hough transform method (HTM)
The conventional Hough transform is a method for detecting

straight lines (or curves) in images. It is basically a point-to-curve
transformation that detects straight lines in images. In this study,
pixel intensity of a profile image was extracted from pixels on the
central line of a vessel. The intensity was averaged over the neighbor
pixels within a 7-pixel wide square that is similar to the physical size
of a RBC. Space-time diagram method is based on the profile image
that is composed of pixel intensity on the central line of continuous
frames.When the plasma gap and/or RBC in blood flow are visible, the
profiles of the space-time diagram will present clear slopes for
velocity determination. The horizontal axis of the space-time diagram
is vessel length (distance) and the vertical axis is frame number
(time). The space-time diagram was divided into small square
diagrams with a size of 16×16 pixels. Slopes were automatically
estimated by using Hough transform. The RBC velocity was deter-
mined by the slope of most apparently oblique line in all of the small
space-time diagrams. In other words, Hough transform technique
considers the polar representation of a line (Kempczynski and
Grzegorzewski, 2008):

R = x cos θ + y sin θ ð2Þ

where (x, y) is the coordinate of each line pixel in the space–time
diagram, θ the orientation of the vector normal to the line and starting

Fig. 2. The schema is to show that the RBC velocity Vwith the same flow direction was simulated as a function of radius r inside a micro-vessel, V(r)=Vc(1-r2/R2), in which Vc is the
center velocity (r=0), R is the micro-vessel radius. Due to viscosity, the velocity is less in value as r increases (closer to the vessel wall).

Fig. 3. An example of different RBC densities and simulated RBC velocities as functions
of location in micro-vessel. In the left diagrams, low density (a), medium density (b),
and high density (c) of RBCs are shown from top to bottom. The right diagram (d)
indicates that RBCs in blood flow have motion with a parabolic curve function in
relation to the location inside a micro-vessel.
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at the origin, and R the length of this vector, which is equal to the
distance of the line to the origin. The discrete image of parameter
space consists of accumulated cells, H(θ, R), that are incremented for
each sinusoidal curve that passes the cell.

On a profile image, border detection is performed using the Canny
edge method. Characteristic curves, straight lines in this study, are
then detected using HTM. The angle θ is calculated using the straight
lines. The blood flow velocity V is calculated by equation

V = 1= tan θð Þ: ð3Þ

The horizontal axis of a profile image is the grey level distribution
along the central line of a blood vessel. The spatial resolution of the
image determined by hardware is 1.42 μm, and if the temporal
resolution is 1/30 s, determined by the maximum sampling rate of the
system. From the velocity equation

V = △D=△T; ð4Þ

we know that the horizontal axis of a profile image corresponds to
distance while the vertical corresponds to time. As the gaps between
RBCs, or the variation among the RBCs, are reflected as the grey level
variation along the central axis, the characteristic lines or strips can be
obtained from the profile image. Using the angle between the lines
and the horizontal axis θ, the velocity equation becomes

V = △D=△T = 1= tan θð Þ ð5Þ

An example of using Hough Transform to get the angle θ from a
blood flow profile image is given here. The Canny characteristic
images are generated by applying Hough transform to the profile
image which is shown as schema in Fig. 4a. The resulted images are
shown as (b) in Fig. 4. The coordinates of the brightest spots are then

located, which are the maximum values of the transform. Since the
point of the longest line appears many times at the same angle, by
analyzing c to f in Fig. 4, the maximum number of appearance and the
corresponding angle are obtained for each image. Such brightest
coordinates (R, θ) calculated for c, d, e and f are (23, −18°), (43,−19°),
(40,−20°) and (26,−19°) respectively. The average blood flow velocity
is thus 284.22 μm/s.

Optical flow method (OFM)
Optical flow computation results in motion direction and motion

velocity at image points. The immediate aim of OFM-based image
analysis is to determine a motion field. It reflects the image changes
due to motion during a time interval dt, and the optical flow field is
the velocity field that represents the three-dimensional motion of
object points across a two-dimensional image. In the present study,
this gradient-base OFM (Horn and Schunck, 1981; Wu et al., 2009;
Huang et al., 2006; Zhang et al., 2008a; Guerrero et al., 2004; Zhang
et al., 2008b) was applied to calculate the RBC velocity on two
successive images. The velocity matrix of displacement, including
horizontal and vertical movement respectively on the vessel image for
each single pixel, was acquired using OFM. The velocity calculation
equation in OFM is shown below.

v n + 1ð Þ = v nð Þ + ∇f
∇f ⋅v nð Þ + ∂f

∂t
α2 +‖∇f ‖2

 !
ð6Þ

where n is iteration times and v nð Þ is the average velocity derived from
the surrounding pixel.

Optical flow equation calculates the difference of images and finds
the deformed image to match the next frame. Originally, optical flow
method (OFM) requires a very small time interval between
consecutive images and no significant change occurs between two

Fig. 4. (a) An image of temporal profile which was composed of intensity of pixels on the central line of micro-vessel. In this example, the length of central line is 256 pixels. (b) The
edge of temporal profile (256×100 pixels) was obtained by using Canny edge detection, which was divided into four of small square diagrams with a size of 64×100 pixels from top
to bottom. (c)-(f) are the Hough transformations which correspond to Canny edge detection as in (b). The angle of the maximal aggregate value of appearance for each image is (c)
-18°, (d) -19°,(e) -20°and (f) -19° respectively.
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consecutive images. The original OFM developed by Horn and
Schunck was not reliable in velocity calculations when object motion
is significant between two consecutive frames, in which no features
are overlapping.

To overcome this problem, optical flow calculations are repro-
cessed for a number of times with continuously updated deformed
images, which converges the velocity field to accurately match the
final deformation to the target image.With this implementation in the
OFM, large motions can be accurately calculated and the quality of
registration is significantly improved, regardless of the motion size.

Results and discussion

The velocities calculated using CCM, HTM and OFM, respectively,
were compared to each other and with the known values from the
simulations by the Matlab based program. This comparison was
applied to various RBC densities, velocities, shapes, vessel sizes and
size variations. In order to evaluate the performances of the proposed
algorithms, a simulated experiment with random RBCsmotion is used
at first. The mean and standard deviation of differences among the
calculated values in number of pixels by using the three image

processing methods were listed in Table 1, which shows overall
average errors of the velocity estimation in variousmicro-vessel cases.
For the velocity estimation in variousmicro-vessel beds, OFM gave the
minimum value in average error while CCM yielded the maximum.

According to calculations using the window diameter of 30~40
pixels for CCM, the flow velocity of the centre micro-vessel were
within 2.741±5.925 pixels/frame. The window size is equal to the
size of sensors for CCM. The image intensity of an RBC inmicro-vessels
was similar to each other. This could cause uniform signal in the
window, which in turn decreases accuracy significantly. For HTM, the
mage of temporal profile was previously intensified by the Canny
edge detection to avoid this problem. Consequently, the calculations
using OFM and HTM show better agreement with known values for
higher densities. The standard deviations for HTM and OFM are about
1 pixels/frame. Judging from the above, the results indicate that the
OFM is a suitable image processing option.

The attention was thus focused on the evaluation of OFM in our
further studies with various vessel shapes. The data analysis points
were selected as shown in Fig. 5. Fig. 6a through d shows the OFM
estimations of the random RBC velocities of various vessel shapes and
compares them with the known values from the simulated images.
The typical difference between the OFM estimations and known
velocities were less than 2 pixels/frame for various micro-vessel beds.

Another experiment, which simulates the flow of RBCs in a straight
line in micro-vessel with a single arteriole (diameter: 33 pixels), was
generated with 50 frames. Both CCM and HTM failed and resulted
with an alternative orientation and large velocity errors. Therefore,
the two methods were not able to measure velocities in a larger
micro-vessel, which left OFM the only choice for such cases.

The calculated velocities using OFM are compared with the known
values in Table 2 and Table 3 for different RBC densities. With higher
density of RBCs, more detailed structures help improving pixel-to-
pixel correspondence between the images in sequence, thus better
accuracy can be achieved in OFM calculations. For the low density
cases, the relatively larger areas of non-cell regions in the images
weaken the correspondence, which introduces larger errors in optical
flow calculations. As shown in diagram a of Fig. 7, the average velocity
error is less than 0.3 pixels/frame for all densities studied with

Table 1
The velocity estimation in various micro-vessel cases by using three measurement
methods. The vessel shape labeling is the same as it in Fig. 1.

The average error for different image processing methods, Mean±S.D. (pixel/frame)

Measurement

Microvessel method shape
pattern

Cross-
correlation

Hough
transform

Optical flow

(a) 2.693±5.628 1.872±0.798 0.718±1.158
(b) 2.705±5.619 1.958±1.029 1.053±1.166
(c) 2.721±5.653 1.877±0.986 1.115±1.188
(d) 2.716±5.822 2.011±0.975 1.275±1.166
(e) 2.704±5.7107 2.043±1.0931 1.070±1.162
(f) 2.362±4.323 2.040±1.026 1.220±1.171
(g) 3.288±8.116 2.350±0.925 1.155±1.180
The overall average error of RBC
displacement

2.741±5.925 2.022±1.001 1.087±1.173

Fig. 5. The measurement position in various cases of micro-vessel bed.
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maximal velocity of 1, 3, and 5 pixels, respectively. The worst relative
error occurred at the highest maximum velocity case (10 pixels/
frame), while the worst relative average error was at the lowest
maximumvelocity case (1 pixel/frame). The relative average error can
be as high as 25% (Fig. 7b).

Conclusions

Three methods, which are commonly applied in red blood cell
(RBC) velocity measurement in micro-vessels, were evaluated with

simulated microscopic video image sequences in this study. The
optical flow method (OFM) demonstrated superior accuracy over the
cross-correlation method (CCM) and Hough transform method
(HTM). With larger size vessels, for which both CCM and HTM have
difficulties in RBC velocity estimation, OFM can still provide accurate
results. This comparison study concluded that OFM is suitable for

Fig. 6. The velocity analysis using OFM in micro-vessels at selected points.

Table 2
The absolute average error by suing OFM in different RBC densities with the same
micro-vessel bed.

The average error estimation of RBC velocity, Mean±S.D. (pixel/frame)

RBC movement, maximum (average)

Velocity 1 pixel 3 pixels 5 pixels 10 pixels

Density (0.7) (2.1) (3.5) (7)

Low 0.200±0.157 0.220±0.176 0.267±0.171 2.107±0.776
Medium 0.203±0.159 0.235±0.171 0.268±0.168 1.440±0.578
High 0.204±0.172 0.246±0.175 0.281±0.177 0.911±0.473
Overall 0.202±0.163 0.234±0.174 0.272±0.172 1.486±0.609

Table 3
The relative average errors by suing OFM in different RBC densities with the same
micro-vessel bed.

The percentage of average error in different RBCs velocity (%)

Maximal velocity

Velocity 1 pixel 3 pixels 5 pixels 10 pixels

Density

Low 28.6 10.5 7.6 30.1
Medium 29.0 11.2 7.7 20.6
High 29.1 11.7 8.0 13.0
Overall Mean±S.D. 28.9±0.3 11.1±0.6 7.8±0.2 21.2±8.6
(C.V.) (0.9) (5.4) (2.7) (40.3) Fig. 7. The velocity estimation in various RBCs densities within same micro-vessel: (a)

absolute average errors, (b) relative average errors.
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accurate measurement of the RBC velocity in small or large micro-
vessels.

In the future work, OFM will be applied to estimate the blood flow
velocity in micro-vessels in vivo laboratory animals to analyze the
change of blood flow velocity on the surface of tumor as tumor grows.
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